FS Series Heads Swing to Tree Disc Saw Heads

S/N WCFS20X003001 -

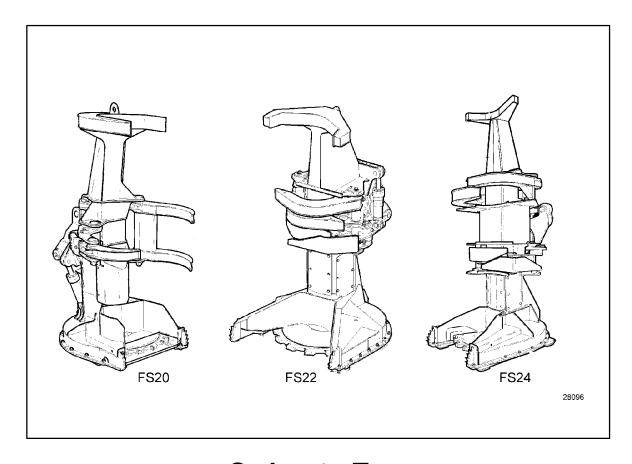
S/N WCFS22X002001 -

S/N WCFS24X004001 -

TECHNICAL MANUAL FS Series Disc Saw Heads TMF382053 (JULY01)

CALIFORNIA Proposition 65 Warning

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects and other reproductive harm.



WARNING

The engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects or other reproductive harm.

Worldwide Construction and Forestry Division

Workshop Manual

Swing to Tree Disc Saw Felling Heads

Timberjack Inc. P.O. Box 160 925 Devonshire Avenue Woodstock, Ontario, Canada N4S 7X1

Telephone:

(519) 537-6271

Issue **07/01-01**

Timberjack

Table of Contents

Section	Description
7400	Introduction
7411	Felling Head Frame
7412	Clamp Arms
7420	Wrist/Boom Adapte
7430	Disc Saw Group
7434	Disc Saw Driveshaft
7440	Hydraulic Group
7441	Hydraulic Motors
7442	Hydraulic Cylinders
7450	Electrical Group

7400-1

7400 Introduction

1.1 Introduction	7400-3
1.1.1 General	7400-3
1.1.2 Models Covered By This Manual	7400-3
1.2 FS20 (Swing to Tree)	7400-4
1.2.1 Component Description	
1.2.2 General Dimensions	7400 5
1.2.3 General Specifications	
1.3 FS22 (Swing to Tree)	7400-7
1.3.1 Component Description	7400-7
1.3.2 General Dimensions	7.400.0
1.3.3 General Specifications	
1.4 FS24 (Swing to Tree)	7400-10
1.4.1 Component Description	
1.4.2 General Dimensions	= 400 44
1.4.3 General Specifications	7400-12
1.5 Torque Values	7400-13
1.5.1 Steel Fasteners	7400-13
1.5.2 Hydraulic Fittings	7400-16
1.6 Application of Adhesives	7400-20
1.6.1 Through Hole (Bolts & Nuts)	7400-20
1.6.2 Blind Holes (Cap Screws, etc.)	7400-20
1.6.3 Pre-Assembled Fasteners	7400-21
1.6.4 Hydraulic Fittings	7400-21
1.7 Tool Lists	7400-22
1.7.1 Service Shop	
1.7.2 Service Truck	
1.7.3 Felling Head Service Tools	7400-24

7400-3

1.1 Introduction

1.1.1 General

The Workshop Manual is intended to provide technical information, component specifications, troubleshooting and removal, disassembly and reassembly procedures for most of the major components of the felling head. Use this manual in conjunction with the applicable Operator/Maintenance Manual and the applicable Carrier Workshop Manuals.

When practical, the Workshop Manual lists likely causes of malfunctions, offers test procedures to verify causes and then illustrates the steps for the adjustment or repair procedure(s).

Troubleshooting must always be a multi-step process. Use the following steps:

- 1. Know the operation of all machine systems.
- 2. Ask the operator about symptoms and when they occur.
- 3. Operate the machine yourself if practical.
- 4. List all possible causes.
- 5. Inspect for obvious causes.
- 6. Eliminate the simple ones by checking oil, changing filters, etc.
- 7. Carry out diagnostic procedures like pressure and leakage testing to pinpoint the cause.

Component specifications provide performance and mode of operation information that can be very useful in troubleshooting.

Disassembly and reassembly procedures are given for many major components. When possible, clearance and torques are given. If a manufacturer's workshop manual is available, it should be given priority.

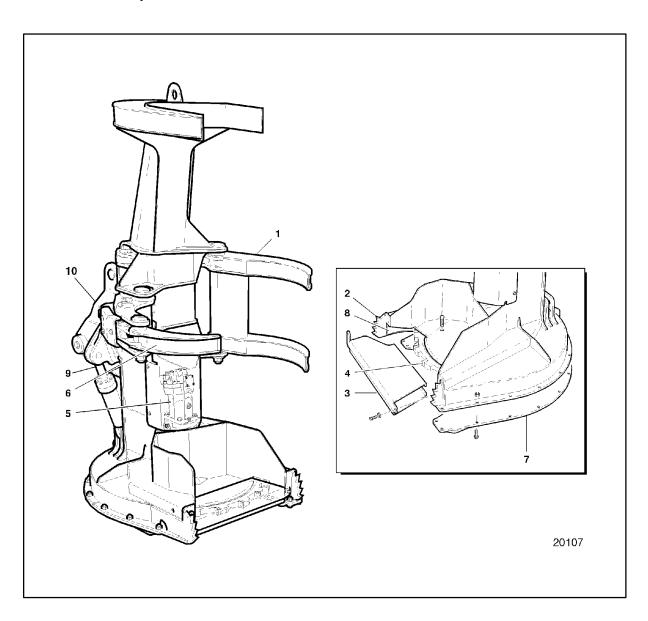
Reference to special equipment for testing and repair is limited, as most repair shops or local machine shops are well equipped to fabricate on an as-needed basis to reduce downtime.

1.1.2 Models Covered By This Manual

Technical information, component specifications, troubleshooting, removal, disassembly and reassembly procedures for the following model felling heads are covered in this manual:

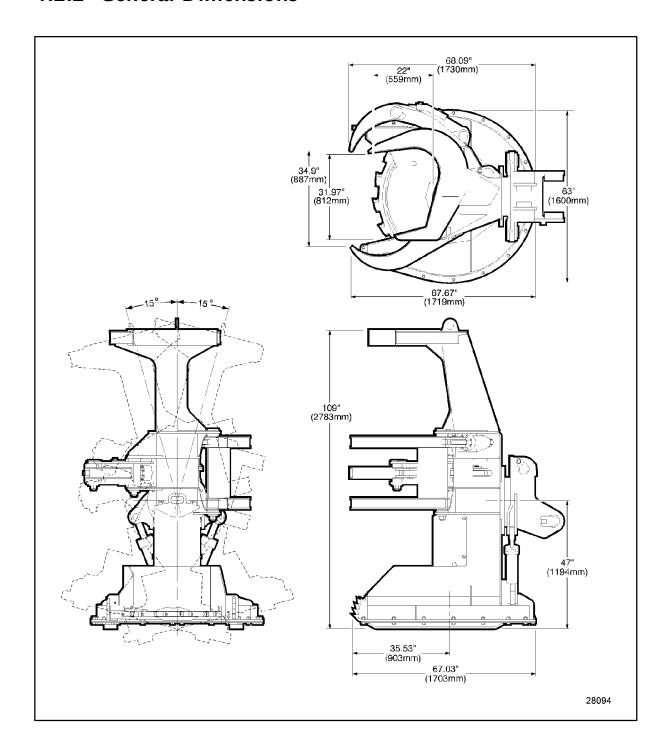
1. FS20 (Swing to Tree)

3. FS24 (Swing to Tree)


2. FS22 (Swing to Tree)

1.2 FS20 (Swing to Tree)

1.2.1 Component Description


- 1. L.H. (Harvesting) Clamp Arms 7412
- 2. Log Rollers 7411
- 3. Saw Blade Guard 7411
- 4. Disc Saw Blade 7430
- 5. Saw Drive Hydraulic Motor 7440

- 6. R.H. (Accumulating) Clamp Arm 7412
- 7. Lower Guards/Skis 7411
- 8. Chip Deflector 7411
- 9. Wrist Cylinder 7440
- 10. Wrist 7420

1.2 FS20 (Swing to Tree)

1.2.2 General Dimensions

1.2 FS20 (Swing to Tree)

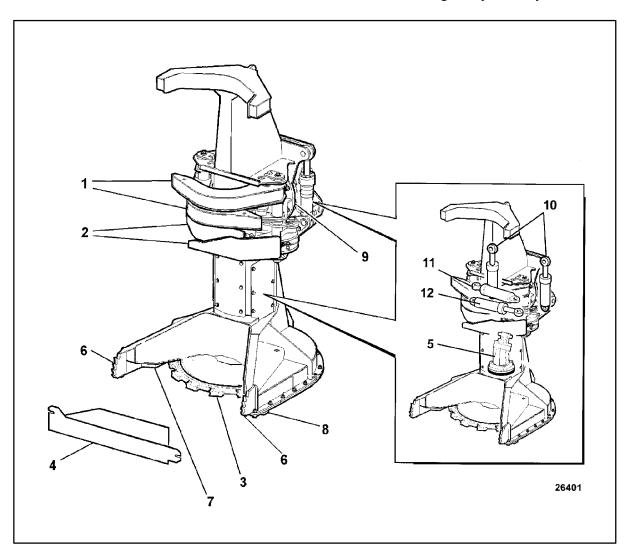
1.2.3 General Specifications

Bolt Torques (lb ft/lubricated)	
Disc Saw Blade Lower Flange Plate	280-320 lb. ft. (380-434 Nm) (3/4"-16 UNF)
Lower Guard Plate	165 lb. ft. (224 Nm) (locknut end) (3/4"-10 UNC)
Saw Tooth	85 lb. ft. (115 Nm) (1/2"-20 UNF)
	160 lb. ft (216 Nm) (5/8"-18 UNF)
Saw Drive Motor	200-220 lb. ft. (271-298 Nm) (3/4"-10 UNC)
Clamp Arm Pin Retainer Nuts	300-350 lb. ft. (407-475 Nm) (1.38"-12 UNC)
Clamp Arm Pin Retainer Bolts	200-220 lb. ft. (271-298 Nm) (3/4"-10 UNC)
Wrist Attachment Pin Retainers	200-220 lb. ft. (271-298 Nm) (3/4"-10 UNC)
	, , , , , , , , , , , , , , , , , , , ,
Wrist Bearing Retainer	450-500 lb. ft. (610-678 Nm) (7/8"-9 UNC)
Wrist Attachment to Bearing	780-800 lb. ft. (1058-1084 Nm) (1"-14 UNC)
Clamp/Wrist Cylinders	
No. Cylinders	2 Clamp - 2 Wrist
Bore Diameter	4.0 in. (101.6 mm)
Rod Diameter	2.0 in. (50.8 mm)
Stroke	8.5 in. (215.9 mm)
Operating Pressure	3000 psi (207 bar)
Hydraulic Requirements	
Disc Saw Motor	30 gpm @ 3500 psi (114 L/m @ 241 bar)
	25 gpm @ 4000 psi (95 L/m @ 276 bar)
Clamp Cylinders	25 gpm @ 3000 psi (114 L/m @ 207 bar)
Optional Wrist Group	10 gpm @ 3000 psi (38 L/m @ 207 bar)
Miscellaneous	
Cutting Capacity	22" (559 mm) diameter
Weight	4850 lb. (2200 kg)
	5350 lb. (2427 kg) (w/optional wrist group)
Disc Saw Blade	

Type Curved Carbide/Hardened

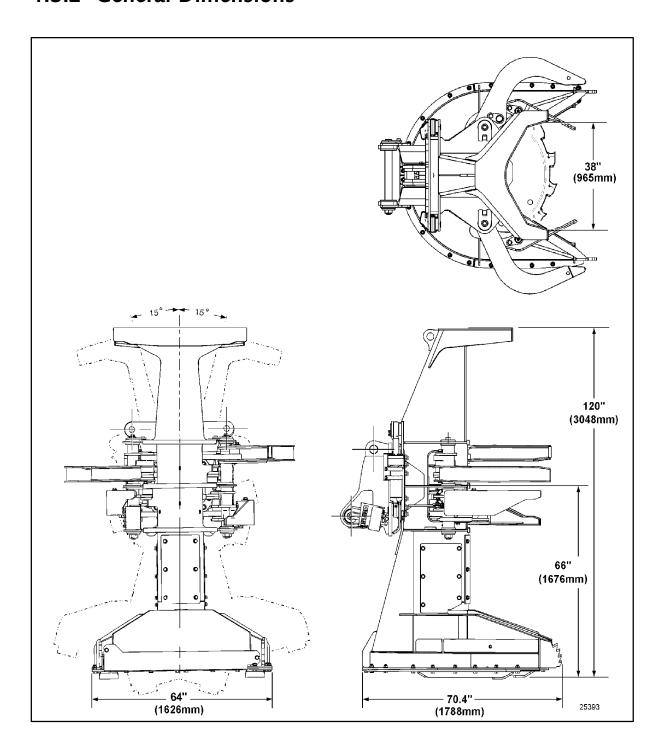
Maximum Allowable Saw Disc Runout 0.100" (2.5 mm)

Note!


Refer to OEM carrier workshop manual for applicable Service Specifications by Model.

1.3 FS22 (Swing to Tree)

1.3.1 Component Description


- 1. Harvesting Clamp Arms 7412
- 2. Accumulating Clamp Arms 7412
- 3. Disk Saw Blade 7430
- 4. Saw Blade Guard 7411
- 5. Saw Drive Hydraulic Motor 7440
- 6. Nose Extensions

- 7. Chip Deflector 7411
- 8. Lower Guards/Skis 7411
- 9. Wrist 7420
- 10. Wrist Cylinder 7440
- 11. Harvesting Clamp Arms Cylinder 7440
- 12. Accumulating Clamp Arms Cylinder 7440

Issue

1.3.2 General Dimensions

Timberjack

Issue

Page

07/01-01 7400-9

1.3 FS22 (Swing to Tree)

1.3.3 General Specifications

Bolt Torques (lb ft/lubricated)

 $(M42 \times 4.5)$

Clamp/Wrist Cylinders

No. Cylinders 2 Clamp, 2 Wrist

 Rod Diameter
 2.0 in. (50.8 mm)

 Stroke
 8.5 in. (215.9 mm)

 Operating Pressure
 3625 psi (250 bar) (3.5in)

Hydraulic Requirements

25 gpm @ 4000 psi (95 L/m @ 276 bar)

..... 4.0 in. - 34.6 gpm @ 2960 psi (131 L/m @ 204 bar)

Miscellaneous

Disc Saw Blade

Type Curved Carbide/Hardened

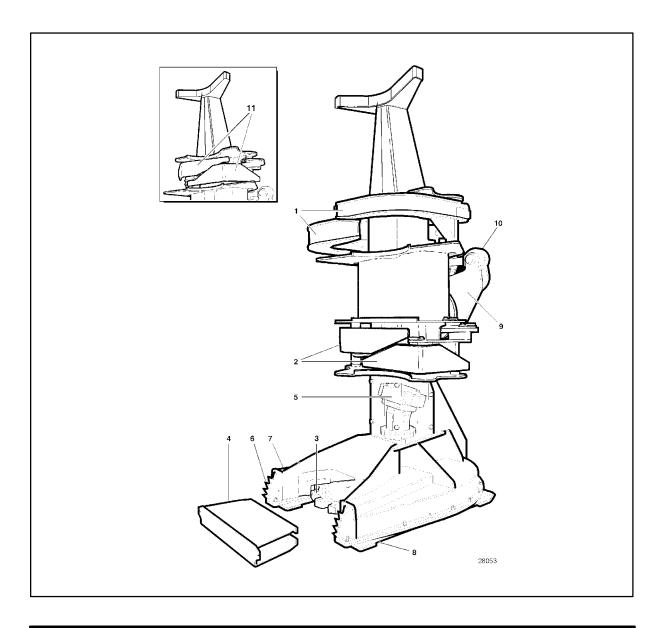
 Saw Speed
 1175 +/- 25 rpm

 Maximum Allowable Saw Disc Runout
 0.100" (2.5 mm)

 Diameter
 56.0" (1422 mm)

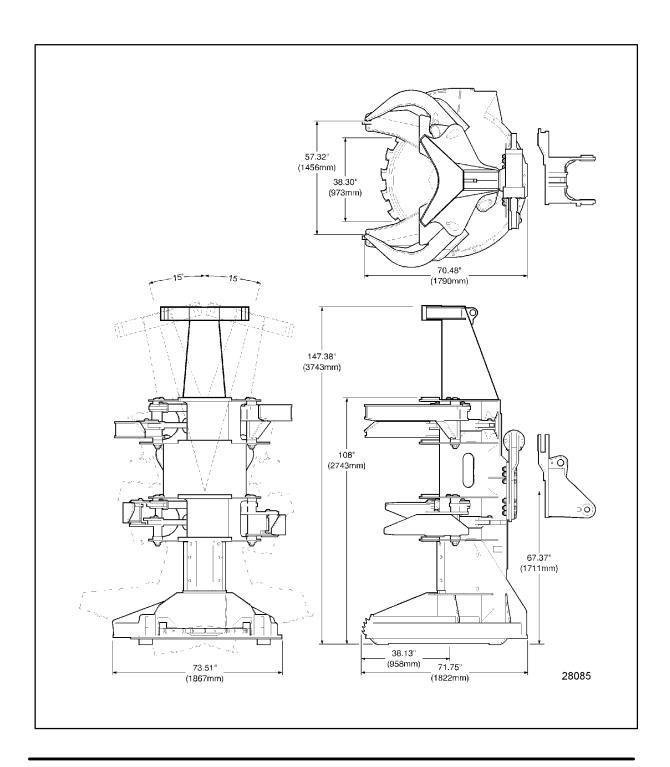
 Weight
 735 Lbs (334 kg)

Note!


Refer to OEM carrier workshop manual for applicable Service Specifications by Model.

1.4 FS24 (Swing to Tree)

1.4.1 Component Description


- 1. Upper (Harvesting) Clamp Arms 7412
- 2. Lower (Accumulating) Clamp Arms 7412
- 3. Disc Saw Blade 7430
- 4. Saw Blade Guard 7411
- 5. Saw Drive Hydraulic Motor 7440
- 6. Nose Extensions

- 7. Chip Deflector 7411
- 8. Lower Guards/Skis 7411
- 9. Wrist 7420
- 10. Wrist Cylinder 7440
- 11. Optional Upper Accumulating Clamp Arms

1.4 FS24 (Swing to Tree)

1.4.2 General Dimensions

1.4 FS24 (Swing to Tree)

1.4.3 General Specifications

Disc Saw Blade Lower Flange Plate	280-320 lb. ft. (380-434 Nm) (3/4"-16 UNF)
Lower Guard Plate	165 lb. ft. (224 Nm) (locknut end) (3/4"-10 UNC)
Saw Tooth	85 lb. ft. (115 Nm) (1/2"-20 UNF)
	160 lb. ft (216 Nm) (5/8"-18 UNF)
Saw Drive Motor	200-220 lb. ft. (271-298 Nm) (3/4"-10 UNC)

Clamp Cylinders

• •	
No. Cylinders	2
Bore Diameter	3.5 in. (88.9 mm)
Rod Diameter	2.0 in. (50.8 mm)
Stroke	12.38 in. (314.5 mm)
Operating Pressure	3000 psi (207 bar)

Wrist Cylinder

No. Cylinders	1
Bore Diameter	6.0 in. (150 mm)
Rod Diameter	3.0 in. (76.2 mm)
Stroke	11.2 in. (284 mm)
Operating Pressure	3000 psi (207 bar)

Hydraulic Requirements

Disc Saw Blade Moror	30 gpm @ 3500 psi (114 L/m @ 241 bar)
	25 gpm @ 4000 psi (95 L/m @ 276 bar)
Clamp Cylinders	30 gpm @ 3000 psi (114 L/m @ 204 bar)
Wrist Cylinder	10 gpm @ 3000 psi (371 L/m @ 204 bar

Miscellaneous

Cutting Capacity	24" (610 mm) diameter
Weight	7900 lb. (3582 kg)

Disc Saw Blade

Series	4000B (WK - Wide Kerf only)
No. Teeth	20 rotatable
Type	Hardened
Saw Speed	1100 +/- 25 rpm
Maximum Allowable Saw Disc Runout	0.100" (2.5 mm)
Diameter	60.5" (1537 mm)
Weight	809 lb. (367 kg)

Note!

Refer to OEM carrier workshop manual for applicable Service Specifications by Model.

07/01-01

1.5 Torque Values

The following torque values are for use in general applications and where torque values are not otherwise specified.

1.5.1 Steel Fasteners

This Standard applies to steel cap screws engaged with steel female thread and is applicable for all thread pitches. Torque values for other materials are to be specified on the drawings where needed.

Fastener Markings

Grade 8 - Imperial

Class 10.9 - Metric

Class 12.9 - Metric

Issue

1.5 Torque Values

1.5.1 Steel Fasteners

Imperial Hex Head

		Tightening Torque Values for Grade 8			
Nominal Thread Diameter		Nm		lb.ft.	
		Min	Max	Min	Max
1/4	0.2500	12	14	9	10
5/16	0.3125	24	27	18	20
3/8	0.3750	50	55	34	40
7/16	0.4375	80	90	60	65
1/2	0.5000	125	135	90	100
9/16	0.5625	170	190	125	140
5/8	0.6250	240	255	175	190
3/4	0.7500	405	455	300	330
7/8	0.8750	645	710	475	525
1	1.000	985	1085	725	800
1-1/8	1.125	1425	1595	1050	1175
1-1/4	1.250	2000	2205	1475	1625
1-3/8	1.375	2710	2980	2000	2200
1-1/2	1.500	3525	3865	2600	2850
1-5/8	1.625	4680	5150	3450	3800
1-3/4	1.750	5850	6510	4300	4800
1-7/8	1.875	8270	7460	5500	6100
2	2.000	8810	9760	6500	7200

1.5 Torque Values

1.5.1 Steel Fasteners

Metric Hex Head

	Tightening Torque Values								
		Class	3 10.9		Class 12.9				
Nominal Thread Diameter	Nm		lb.ft.		Nm		lb.ft.		
	Min	Max	Min	Max	Min	Max	Min	Max	
M5	7	8	5	6	8	9	6	7	
M3 M6	12	8 14	9	10	8 14	9 16	10	12	
M8	30	35	22	24	35	40	25	28	
M10	55	65	42	48	65	75	50	56	
M10 M12	100	115	75	85	120	135	85	100	
M14	165	185	120	135	190	210	140	155	
M16	250	285	185	210	290	330	215	245	
M20	490	550	360	405	570	645	420	475	
M22	665	745	490	550	775	875	570	645	
M24	840	950	620	700	1000	1125	725	820	
M30	1700	1900	1250	1400	1950	2200	1450	1625	
M36	2900	3300	2150	2450	3425	3850	2525	2850	
M42	4675	5250	3450	3900	5500	6150	4050	4550	
M48	7050	7900	5200	5800	8200	9200	6050	6800	

Page

1.5.1 Steel Fasteners

Metric Flanged Hex Head

	Tightening Torque Values for Class 10.9					
Nominal Thread Diameter	1	Nm	lb.ft.			
	Min	Max	Min	Max		
M5	7	8	5	6		
M6	12	15	9	11		
M8	32	38	23	26		
M10	60	70	45	50		
M12	110	125	80	90		
M14	170	190	125	140		
M16	265	300	195	220		
M20	515	575	380	425		
M22	665	745	490	550		
M24	840	950	620	700		

Notes:

- Torque values shown are based on Zinc Phosphate or oil coating. 1.
- The torque values listed develop clamping forces that are based on material proof loads for the different class fasteners. The clamping forces developed are $85 \pm 5\%$ of proof loads.
- All the torque values in Nm or lb.ft. are rounded to the nearest multiple of 5, or in some cases, to the nearest whole number to be in line with graduations on torque wrenches and dials.

CAUTION

Use only metric tools on metric hardware and imperial tools on imperial hardware to assure correct torque readings, and to prevent damage to tools and hardware as well as possible injury.

1.5 Torque Values

1.5.2 Hydraulic Fittings

This standard establishes torques for various types of hydraulic fittings.

O-Ring Fittings

All O-Rings must have a light coat of system fluid before tightening to the torque in the following chart.

O-Ring Face Seal End			Nominal SAE	O-Ring Boss End			
Thread Size	Swivel Nut Torque		Dash No.			Fitting or t Torque	
	Nm	lb.ft			Nm	lb.ft.	
9/16-18	14-16	10-12	-4	7/16-20	20-22	14-16	
11/16-16	24-27	18-20	-6	9/16-18	33-35	24-26	
13/16-16	43-47	32-35	-8	3/4-16	68-78	50-60	
1-14	60-68	46-50	-10	7/8-14	98-110	72-80	
1-3/16-12	90-95	65-70	-12	1-1/16-12	170-183	125-135	
1-3/16-12	90-95	65-70	-14	1-3/16-12	215-245	160-180	
1-7/16-12	125-135	92-100	-16	1-5/16-12	270-300	200-220	
1-11/16-12	170-190	125-140	-20	1-5/8-12	285-380	210-280	
2-12	200-225	150-165	-24	1-7/8-12	370-490	270-360	

Ref: SAE J1453 June '94

7400-18

1.5 Torque Values

1.5.2 Hydraulic Fittings

SAE Code 61 and 62 Flanges

For both one piece and split flanges turn the bolts until mating parts are in full contact. Tighten one bolt, then the opposite, followed by the remaining two before applying torque.

Flange Size	Flange Dash	Code 61 -	Standard Pres	ssure Series	Code 62 - High Pressure Series			
0.25	No.	Torque lb.ft.	Nm	Bolt Thread	Torque lb.ft.	Nm	Bolt Thread	
				-11.5.10			-4.5.10	
1/2	-08	15-19	20-25	5/16-18	15-19	20-25	5/16-18	
3/4	-12	21-30	28-40	3/8-16	25-34	34-45	3/8-16	
1	-16	27-36	37-48	3/8-16	42-50	56-68	7/16-14	
1-1/4	-20	35-46	48-62	7/16-14	63-75	85-102	1/2-13	
1-1/2	-24	46-59	62-79	1/2-13	117-134	158-181	5/8-11	
2	-32	54-67	73-90	1/2-13	271-294	200-217	3/4-10	
2-1/2	-40	79-92	107-124	1/2-13				
3	-48	138-150	186-203	5/8-11				

Ref: SAE J518 June '93

1.5 Torque Values

1.5.2 Hydraulic Fittings

Tapered Pipe Threads (NPTF & NPT)

Pipe Thread Size	Dash No.	Threadsealant	s with (Loctite) Nm	Pipe Thread Size	Dash No.	Threads sealant lb.ft.	s with (Loctite) Nm
1/8-27	-02	15	20	1-11-1/2	-16	55	75
1/4-18	-02	18	25	1-1/4-11-1/2	-20	70	95
3/8-18	-06	26	35	1-1/2-11-1/2	-24	81	110
1/2-14	-08	33	45	2-11-1/2	-32	96	130
3/4-14	-10	44	60				

Thank you very much for your reading. Please Click Here. Then Get COMPLETE MANUAL. NO WAITING

NOTE:

If there is no response to click on the link above, please download the PDF document first and then click on it.

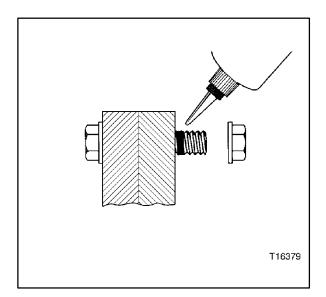
1.5 Torque Values

1.5.2 Hydraulic Fittings

Flare Fittings

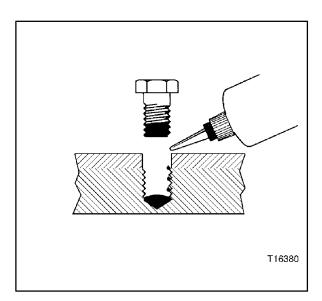
- 1. Check flare and seat for defects that might cause leakage and lubricate the connection with system fluid.
- 2. Install hoses without twist.
- 3. When a torque wrench cannot be used, tighten until seats bottom. Using two wrenches to prevent twisting, rotate the nut the number of hex flats or equivalent shown below.

Torque and Turn Flats for Tightening Flare Fittings

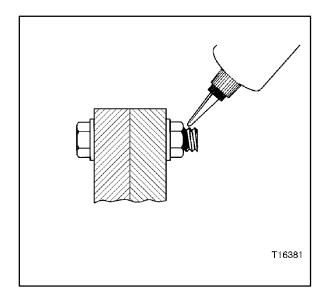

Tube	Tube	Thread 37° F		Flare	Number	of Flats
O.D. (Inches)	Dash No.	Size	lb.ft.	Nm	New	Re-assy
3/16	-03	3/8-24	4-5	5-7	2-1/2	1
1/4	-04	7/16-20	9-10	12-14	2-1/2	1
5/16	-05	1/2-12	15-17	20-23	2-1/2	1
3/8	-06	9/16-18	20-22	27-30	2	1
1/2	-08	3/4-16	30-33	41-45	2	1
5/8	-10	7/8-14	40-44	54-60	1-1/2-2	1
3/4	-12	1-1/16-12	70-77	95-104	1	3/4
7/8	-14	1-3/16-12	82-90	111-122	1	3/4
1	-16	1-5/16-12	90-99	122-134	3/4	3/4
1-1/4	-20	1-5/8-12	120-132	163-179	3/4	3/4
1-1/2	-24	1-7/8-12	131-144	178-195	1/2	1/2
2	-32	2-1/2-12	300-330	407-447	1/2	1/2

1.6 Application of Adhesives

To ensure repairs are performed correctly, adhesive application techniques are presented here, along with recommended adhesive types for each scenario.


1.6.1 Through Hole (Bolts and Nuts)

- 1. Clean all threads (bolt and nut) with cleaning solvent.
- Spray all threads with primer such as Loctite[™] 7649 (Primer N). Allow 30 seconds to dry.
- 3. Insert bolt into through-hole assembly.
- 4. Apply several drops of Loctite[™] 242 or equivalent threadlocker at proposed tightened nut engagement area.
- 5. Assemble and tighten nut to specifications.


1.6.2 Blind Holes (Cap Screws, etc.)

- 1. Clean all threads (bolt and hole) with cleaning solvent.
- Spray all threads with primer such as Loctite[™] 7649 (Primer N). Allow 30 seconds to dry.
- 3. Squirt several drops of Loctite [™] 277 or equivalent threadlocker down female threads into bottom of hole.
- 4. Apply several drops to bolt.
- 5. Tighten as usual.

Issue

1.6 Application of Adhesives

1.6.3 Pre-Assembled Fasteners

- 1. Clean bolts and nuts with cleaning solvent.
- 2. Assemble components.
- 3. Tighten nuts.
- 4. Apply drops of Loctite [™] 290 or equivalent threadlocker at the bolt/nut juncture.

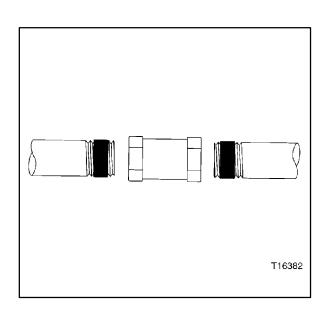
Important!

Avoid touching bottle tip to metal.

Note!

For preventive maintenance on existing equipment, retighten nuts and apply Loctite[™] 290 or equivalent at the bolt/nut juncture.

1.6.4 Hydraulic Fittings



 Spray all threads (male and female) with primer, such as Loctite[™] 7649 (Primer N). Allow 30 seconds to dry.

Note!

Primer is not required for brass parts.

- Apply Loctite[™] Pneumatic/Hydraulic Seal 545 or equivalent threadsealer to male threads, starting one or two threads from end of the pipe.
- 4. Assemble parts snugly. Do not overtighten.
- 5. If initial pressure exceeds 1000 psi. (6.9 MPa), wait 30 minutes before pressurizing.

